Sampling and Sampling Distributions

- Normal Distribution

- Aims of Sampling
- Basic Principles of Probability
- Types of Random Samples
- Sampling Distributions
- Sampling Distribution of the Mean
- Standard Error of the Mean
- The Central Limit Theorem

Review of the Normal Distribution

- Normal Distribution
is a theoretical ideal
distribution. Real-life empirical distributions
never match this model perfectly.
However, many things in life do approximate the are said to be "normally distributed."

Scores "Normally Distributed?"

Is this distribution normal?
There are two things to initially examine: (1) look at the shape illustrated by the bar chart, and (2) calculate the mean, median, and mode.

	Sampling
What is a Population?	A group that includes all the cases (individuals, objects, or groups) in which the researcher is interested.
- What is a Sample?	A relatively small subset from a population..

Sampling

- to determine what is true of the population without having to question (or collect data on) the
entire population.

What is the aim of Sampling?

Sampling

- Parameter - A measure (for example, mean or standard deviation) used to describe a population distribution.
- Statistic - A measure (for example, mean or standard deviation) used to describe a sample distribution.

Probability Sampling

A method of sampling that enables the researcher to specify for each case in the population the probability of its inclusion in the sample.

Typically, every case has an equal chance of being selected for the sample.

Probability Sampling:
Simple Random Sampling

A sample designed in such a way as to ensure that:
every member of the population has an equal chance of being chosen
(This can be done using a table of random numbers, computer, or other means: Appendix A in your book provides a Table of Random Numbers)

Probability Sampling

 Systematic Random SamplingA method of sampling in which every K th member in the total population is chosen for inclusion in the sample (for example every 10^{+1} member)

To determine the very first case selected use simple random sampling (e.g., if the skip interval is ten, use simple random sampling to choose the first case among the first 10 cases in the population).

Systematic Random Sampling
figur 11.2 sytematic Rendom Sompling

0ncogesora
corgeoraid 0ncogacora

Probability Sampling: Stratified Random Sampling

A method of sampling

 obtained by(1) dividing the population into subgroups based on one or more variables central to ou analysis and
(2) then drawing a simple random sample from each of the subgroups

Probability Sampling:
Stratified Random Sampling

Proportionate stratified sample -
 The size of the sample selected from

each subgroup is proportional to the
size of that subgroup in the entire population.

Disproportionate stratified sample The size of the sample selected from each subgroup is disproportional the size of that subgroup in the population.

Disproportionate Stratified Sample

Predicting the Population Based on a Random Sample

A Statistical Dilemma:

How much confidence can we have that our sample estimates reflect the parameters of the larger population?

There are Two Distributions That Help Us Estimate Our Confidence in the Sample Statistic

1. The actual distribution of scores for a variable in a sample of the population is a ample distribution. We use statistics population parameters.
2. The sampling distribution is a theoretical distribution of all possible sample distribution of all possible sample
estimates of the population parameter in which we are interested (we will be examining this much closer).

Sampling Distribution of the Mean

\% of Eligible Voters who voted in 1992: sample means

Sampling Distribution

- Variables that don't have a normal distribution, do have a normal sampling distribution of their parameters such as
the mean.

If we take a die and role it 100 times what will the normal distribution look like?

- If we take a die and roll it so that we have 100 sample means, what will the sampling distribution look like?

Sample Size

As the sample size increases the
sample estimates more closely reflect the population parameters and:
the sample distribution more closely reflects the sampling distribution

This includes both the sample mean and sample standard deviation.

In sum a Sampling Distribution is:

- a probability distribution of all possible sample values of the population parameter of interest.
- Sampling distributions are never really observed (and consequently are considered "theoretical")
- To better understand the concept of the sampling distribution, using a limited number of samples, let's illustrate how one could begin to generate such a distribution.

Here is a Sampling Distribution of Sample Means with 96 Samples

Here is a Sampling Distribution of Sample Means with 170 Samples

The Central Limit Theorem summarizes what we have learned:

- If all possible random samples of size N are drawn from a population then, as the number of samples increases, the sampling distribution of a statistic (such as the mean) becomes approximately normal.

A Single Sample and the Sampling Distribution

If we take only a single random sample, and the sample size is large (50 is okay 150 is the sample size is large (50 is okay, 150 is better), then we can assume that the samp
distribution will be very similar to the distribution will be very similar to the
population distribution and also the sampli population distribution and also the sampling
distribution (this is referred to as the Law of Large Numbers).

Therefore, the properties of the sampling distribution can be applied to our single, large random sample.

The Central Limit Theorem (continued)

Characteristics of the sampling distribution include:
$--68 \%$ of the sample means fall within ± 1 standard error of the average or mean of the means (the SE is similar to the SD and will be discussed further)
$--95 \%$ fall within ± 1.96 standard errors of the mean

A Single Sample and the

 Sampling DistributionThus, with a single, large random sample we can identify confidence intervals within which our population parameter is likely to fall.

Sampling Distribution

In sum, properties of the "sampling distribution" tell us that the distribution f multiple sample statistics (such as the mean) is likely to be normal (have normal distribution)

Consequently, we can use the properties of the normal distribution to help us determine our level of confidence that our sample statistic reflects the population parameter.

Applying Properties of the Sampling Distribution:

Since the distribution of a single large sample is very similar to the sampling distribution and we don't have the actual sampling distribution, we use a single sample in place of the sampling distribution.
We can use the number of cases and the standard deviation of a single sample to calculate the standard error of the sampling distribution and subsequently the level of confidence for our sample statistics.

Calculating the Level of Confidence: An Example

1. We take a sample of 100 new Assistant Professors of sociology and determine each person's income.
2. In our sample, the mean income is $\$ 50,000$ (for nine months) and the standard deviation is $\$ 7,000$.

In this example, we want to know how much confidence can we have that our sample mean income reflects the mean for the whole population of new sociology Assistant Professors.

Properties of the sampling distribution tell us that by:
(1) calculating the standard error of the mean and then
(2) applying it to the normal curve (much like we did for the population's standard deviation) we can:
(3) determine levels of confidence in our sample statistic.

In sum, properties of the sampling distribution tell us that:

We can use a sample mean and standard deviation to calculate a standard error and subsequently identify the level of confidence we have in our sample findings.
What exactly is a sampling distribution?
And
What is standard error?
www.ruf.rice.edu/ ~lane/ stat sim
Review Homework

The Central Limit Theorem

$\sigma_{y} \quad \sigma_{y} / N$

